
Automated Runtime Verification with Eagle

Allen Goldberg and Klaus Havelund

Kestrel Technology, Palo Alto, California, USA
{goldberg,havelund}@kestreltechnology.com

Abstract. EAGLE is a very powerful logic for expressing behavioral properties
about systems that evolve over time. Specifically, the logic can be used to moni-
tor the execution of computer programs. EAGLE is an extension of propositional
logic with three temporal kernel operators, with recursion, and with parameteri-
zation over formulas in the logic as well as over data values. Formula parameteri-
zation allows the user to define new temporal combinators. Data parameterization
allows to define properties relating data values from different points in time. A
wide range of different notations can be defined on top of EAGLE using these
mechanisms, such as future and past time linear temporal logic, extended regular
expressions, real-time logics, interval logics, forms of quantified temporal logics,
and so on. EAGLE is implemented as a Java library. Monitoring is done on a state-
by-state basis, without storing the execution trace. In this paper we demonstrate
the logic on an event-based component model of a bounded priority queue.

1 Introduction

Enterprise information systems must meet rigorous requirements for secure, correct,
and responsive behavior. In recent years a software verification method called runtime
verification has been the subject of much research [1]. The target system is instrumented
so as to produce a log of relevant events. The resulting event log is analyzed by a mod-
ule called an observer that checks conformity with required functional and performance
properties. However, unlike pure performance analysis, runtime verification is oriented
towards mainly checking system behaviors. Its ability to do so is the result of the avail-
ability of a highly expressive language for asserting system properties, and the transla-
tion of these assertions into efficient monitoring code. We shall describe the powerful
temporal logic, EAGLE, first introduced in [2], a rule-based language for specifying
properties together with an interpreter for the language.

We believe this approach is particularly appealing for monitoring large scale enter-
prise information systems. It can be used during test, but also on-line during operation,
to monitor the system and alert operators and/or developers when a system fails to meet
functional or performance requirement. To avoid resource contention, the event log may
be streamed to an observer executing on a separate processor. Indeed, because of its so-
phistication, EAGLE can be used to diagnose faults with sufficient precision to enable
an automated response to the detected fault.

Temporal logics are a formal languages for expressing properties of computations
i.e. temporally ordered sequences of states or events. Temporal logics were developed in
response to the inadequacies of earlier formal program verification logics that focused

2 Goldberg and Havelund

on proving correct the input/output behavior of a sequential program. These logics are
not appropriate for reactive, transaction based systems. Since the temporal logics were
designed for proving correctness, usually by model checking, they were designed as
a compromise between property expressibility and tractability of the model checker.
However model checking has not effectively scaled to large systems. We designed EA-
GLE for monitoring the behavior of large scale systems. Producing a scalable monitor,
while non-trivial, is not as difficult as scaling up model checking, and so our design
goal favored maximal language expressibility. EAGLE was designed with a simple core
and an extensibility mechanism that allows other temporal logics to be easily defined
within it.

The remainder of the paper is organized as follows. Section 2 provides an high-
level overview of EAGLE. Section 3 introduces a simple priority queue example, and its
informal requirements, such as response time, security and system integrity properties.
In Section 4 these requirements are formalized in EAGLE for monitoring. Section 5
concludes the paper.

2 The Eagle Temporal Logic

2.1 The Eagle System

The overall structure of the EAGLE system is shown in Figure 1. A monitored system
is instrumented to produce an event stream. The structure of the events is user-defined.
The state Updater responds to events by invoking a user-defined function that updates
the EAGLE state. Recall that temporal logic allows the expression of properties over
sequences of computation states. EAGLE does not directly analyze the evolving states
of the target system, only the relevant data about the system that get stored in the EAGLE
state. When the state is updated in response to an event, the EAGLE engine is invoked
to check the validity of the user-defined EAGLE monitors.

EAGLE is implemented in Java. Thus to use EAGLE, the user must define the mon-
itors, specify the EAGLE state as Java class that arbitrarily subclasses an EAGLE state
base class, instrument the target system to generate event sequences, and write a method
that updates the state in response to the event.

Target
System event stream

State
Updater

Eagle
State

Monitors

Eagle
Engine

Fig. 1. The EAGLE system

Automated Runtime Verification with Eagle 3

2.2 Eagle Monitors

The logic allows primitive assertions about the state (written as Boolean-valued Java
expressions on state), the usual Boolean connectives, and temporal operators that refer
to states in the past or future. The logic defines two primitive temporal operators and
uses rules to define others. The two primitive temporal operators are the next state
operator, denoted ©F and the previous state operator, denoted

⊙
F . The assertion

©F is true if and only if the assertion F is true in the next state. The assertion
⊙

F is
true if and only if the assertion F is true in the previous state.

A typical temporal operator is �F , read eventually F, which states that relative to the
current state, there is a subsequent state in which the predicate F is true. For example
the formula send() → �ack() asserts that if in the current state there is a send event then
in some subsequent state there will be an ack event. To express �F in EAGLE we define
a rule, written as

min E(Form F) = F ∨©E(F)

Rules are like parameterized macros. In this case the macro E is defined with a param-
eter F of type Form (short for Formula). The rule states that E(F) is true if F is true in
the current state or if E(F) is true in the next state. Notice that the rule is defined recur-
sively and without a terminating case. To prevent infinite regress, EAGLE requires that
any recursive reference to a rule name must be guarded by a next or previous operator.
Mutually recursive rules are allowed. The keyword min at the start of the rule has the
technical meaning that this rule is defined using minimal fixpoint semantics. In EAGLE
to monitor the above temporal formula one writes:

mon SendsAck = send() → E(ack())

Another important operator in temporal logic is always (written �F) meaning that the
formula F is true in every subsequent state. This is defined in EAGLE as

max A(Form F) = F ∧©A(F)

That is, A(Form F) is true if F is true in the current state and A(Form F) is true
in the next state. Returning to the formula send() → E(ack()), note that this formula
only states that if a send event is detected in the current state it will eventually be
acknowledged. This is a property that we probably want true for every send event. This
intention is expressed by the EAGLE formula A(send() → E(ack())), which can be read
as “whenever there is a send event then eventually there is an ack event.” The pattern of
this formula is common and is called the response pattern. It asserts that if an event of
one type occurs then the target system (eventually) responds to it.

Now suppose we wish to assert that once there is a send event there should not
be another send until the acknowledgement of the first send is received. We do so by
defining a rule U(Form F1, Form F2) commonly called until, asserting that the formula
F1 should remain true in all states forward until one that satisfies F2. Formally,

min U(Form F1, Form F2) = F2 ∨ (F1 ∧©U(F1, F2))

The above formulas are called future time formulas since the operators refer to subse-
quent states. EAGLE symmetrically supports past time operators. Built into the logic is

4 Goldberg and Havelund

the prior state operator, denoted
⊙

. The formula
⊙

F is true in the current state if and
only if F is true in the prior state. By analogy to the eventually operator, the previously
operator, meaning sometime in the past, is defined by

min P(Form F) = F ∨
⊙

P(F)

Suppose we wish to assert that if an ack event occurred then there must have been a
previous send event. This is stated with the past time formula A(ack() → P(send())).
Past time formulas are often useful in stating security properties that assert that if some
activity occurs then there was previously a valid request for that activity.

EAGLE has been designed to work both with continuously operating systems and
those that terminate. The former corresponds to online monitoring of an event stream
that is potentially infinite, and the latter to monitoring finite traces. In the case of a finite
trace, at the end of the trace EAGLE determines whether each monitor succeeds or fails.
It does so by evaluating the monitor in a “virtual” final state. Any primitive formula
referring to the virtual state or the next state operator evaluates to false; any rule defined
with the min (max resp.) keyword evaluates to false (true), and Boolean connectives are
evaluated normally. Similar rules are used to evaluate a formula involving the prior state
operator in the first state. For example, always (A) is defined as a maximal rule and will
evaluate to true at the end of the trace. Eventually evaluates to false at the end of a trace.
The intuition is that always is a safety property that was true at each encountered state
and so should be true at the end of the trace, while eventually is a progress property
which remained unfulfilled at the end of the trace. In temporal logic the until operator
has a strong form, that was defined above, and a weak form. In EAGLE the weak form is
defined as max W(Form F1, Form F2) = F2 ∨ (F1 ∧©U(F1, F2)). The only difference
is that the weak form is defined as a maximal rule. The effect is that a finite trace all of
whose states satisfy F1 but not F2 will satisfy the weak form but not the strong form.

Data Parameters. Now suppose that each send event has an associated identifier and
that the acknowledge event repeat that identifier. Suppose we would like to check that
the identifier of the received acknowledge corresponds to the identifier of the send. We
assume that the identifier is an integer recorded in the EAGLE state and accessed by the
method getId(). Above we have seen that rules may be parameterized by formulas; here
we will see that they can also be parameterized by data values. Data parametrization
allows assertions that relate the value of EAGLE state variables at different points in
time. To solve the problem at hand, we bind the identifier of the send message to a rule
parameter and then test the equality of the parameter against the value of the identifier
of the acknowledge event.

min Ei(int id) = E(ack() ∧ id = getId())
mon SendAct = Always(send() → Ei(getId()))

The data parameters makes EAGLE richer than propositional temporal logic.

State Machines Many (but not all) properties expressible in EAGLE can be expressed
using state machines, with the intuitive graphical notation that many people find easier

Automated Runtime Verification with Eagle 5

to comprehend. In this section we shall describe a canonical translation of a rich formu-
lation of state machines into EAGLE. This formulation of state machines implements
demonic non-determinism, actions performed on transitions that update a collection of
variables local to the state machine, arbitrary EAGLE formulas as transition guards, and
the ability to assert a “success formula” or “failure formula” within a state. The machine
is non-deterministic in the sense that if two transitions from a state are enabled, then
conceptually the machine enters both states. A computation is accepting if both transi-
tions lead to an accepting state. It is a simple matter to allow angelic non-determinism
or no non-determinism at all. The semantics of a “success formula” is that if a state is
entered and it has an associated success formula that evaluates to true, then that branch
of the non-deterministic computation is accepted. If a failure formula is true, the state
machine fails. If they are both true the success action takes precedence. Note, the suc-
cess, failure and the formulas guarding transitions are arbitrary EAGLE formulas, and
so may include past and future time temporal operators. Similar to many extended state
machine notations, transitions may be labelled with actions, in this case assignments of
expressions to a (subset) of the variables declared local to the state machine.

The translation of such a state machine to EAGLE maps each state uniformly to
two rules: a staging rule and a main rule. We describe the translation for an arbitrary
state S with success formula succ, failure formula fail and transitions t1, . . . , tn. For
state S the main rule is named S and the staging rule S′. Suppose v = v1, . . . , vm

are the local variables of the state machine and that they have types ty1, . . . , tym. Each
rule is parameterized by the local variables, so the formal parameter list for each rule
is ty1 v1, . . . , tym vm. The main rule for S is max(min) if and only if S is accepting
(rejecting). Suppose that transition ti has destination state Di, condition ci, and action
v := ei. The body of the main rule is

succ ∨ (¬fail ∧ (c1 → D1
′(e1)) ∧ · · · ∧ (cn → Dn

′(en)) ∧ otherwise)

where otherwise is a formula

(¬(c1 ∨ . . . ∨ cn) → S′(v))

The definition of the staging rule is

max S′(ty1 v1, . . . , tym vm) = ©S(v)

A state machine accepts a trace if and only if an EAGLE a monitor asserting the main
rule of the initial state (parameterized by initial values) is true on that trace. The stag-
ing transformations insure that assignments on transitions are evaluated in the current
EAGLE state. If the state machine has no data variables the staging rules are not needed
(and the primes are dropped in the rule body).

Figure 2 gives an example. This state machine accepts a finite trace if and only if the
number of a events is greater than or equal to the number of b events. S is the initial and
only final state. One variable c is defined which counts the relative number of observed
a’s and b’s. Figure 2 also shows the translation to EAGLE rules. The state machine is
invoked by referencing the rule of the main rule of the initial state with the initial value
of the local variable i.e S(0).

6 Goldberg and Havelund

S T

int c = 0

b & c=0 / c:=-1

a & c=-1/ c:=0a / c:= c+1
b / c:=c-1

b&c>0 / c:= c-1
a & c<-1 / c:= c+1

max S(int c) = ((b() ∧ c > 0) → S′(c− 1))
∧((b() ∧ c = 0) → T′(−1))
∧(a() → S′(c + 1))
∧(¬((b() ∧ c > 0) ∨ (b() ∧ c = 0) ∨ a()) → S′(c))

max S′(int c) = ©S(c)
max T(int c) = ((a() ∧ c < −1) → T′(c + 1))

∧((a() ∧ c = −1) → S′(0))
∧(b() → T′(c− 1))
∧(¬((a() ∧ c < −1) ∨ (a() ∧ c = −1) ∨ b()) → T′(c))

max T′(int c) = ©T(c)

Fig. 2. A state machine and its translation

3 A Priority Queue and its Properties

To illustrate Eagle we consider a simple event-based component model of computation.
In this model, components have input and output ports. Events flow along connectors
from an output port in one component to an input port in another using a push or data
driven model. That is, arrival of an event on an input port causes computation in the
component which in turn can generate additional events on its output ports. Commu-
nication is synchronous in the sense that a sender component delivers a message to a
receiver in theoretically instant time. Events are arbitrary objects.

Fig. 3. A simple queue model

Figure 3 shows as an example a multiple-producer/single-consumer architecture
mitigated by a priority queue, here with two producers. The figure shows the connec-
tions, named B1, B2, C and D, between the components as directed arrows, indicat-
ing the direction of the message flow. Each producer repeatedly sends messages to the

Automated Runtime Verification with Eagle 7

queue on the connections respectively B1 and B2. The consumer repeatedly consumes
a message on C, processes it, and then acknowledges the receipt of the message on
D, thereby asking for a new message. Messages are time stamped and are furthermore
identified by an ID. We assume that every message produced by a producer has a unique
ID and that the acknowledgement includes this ID. While this example may be simple
it is emblematic of a component-based typical pattern.

We will show how behavioral properties of this architecture can be expressed. We
assume that each connector is instrumented so that when a message is transmitted on
the connector an event is transmitted to the observer that checks conformance with
the EAGLE properties. The nine properties stated informally in English below will be
formalized in EAGLE in the next section.

requiredResponse Every message from a producer (communicated on either B1 or B2) must
be responded to and acknowledged (on D) by the consumer within 50 seconds.

stayAliveQueue Whenever a message is sent to the queue from a producer (on either B1 or B2),
a message (not necessarily the same) must be consumed by the consumer (on C) within 32
seconds.

limitedSize There are never more that 40 messages in the queue.
C D Alternation The consumer should alternate between consuming messages (on C) and ac-

knowledging messages (on D).
stayAliveConsumer Every message consumed (on C) by the consumer is processed and ac-

knowledged (on D) within 30 seconds.
noJunkConsumed Every message consumed by the coonsumer (on C) has previously been pro-

duced (on B1 or B2).
noJunkAcknowledged Every message processed and acknowledged by the consumer (on D)

has previously been consumed by the consumer (on C).
orderPreserved The queue behaves as a FIFO queue wrt. messages produced by producer 1.

That is, the consumer consumes (on C) messages produced on B1 in the order in which they
were produced.

B1HasPriority Messages produced by producer 1 (on B1) have priority over messages pro-
duced by producer 2 (on B2). That is, as long as there are pending B1 messages in the
queue, no B2 message will be consumed (on C) by the consumer.

4 Formalization of Buffer Properties in Eagle

As mentioned, the components are assumed too be instrumented to emit events to the
observer whenever a message is communicated on a connector. For each such event, the
EAGLE monitor state is updated to store the event and its parameters. This section first
defines the monitor state and some auxiliary rules, then the properties from the previous
section are formalized. Three data items are relevant for each event: the kind of event
(B1, B2, C or D), the identity of the message, and the time it occurred, measured in
seconds since the start of the system. The following shows the state of the observer,
including the declaration of a variable for each of these pieces of information.

8 Goldberg and Havelund

class State extends EagleState {
static String connector;
static int ident, clock;
static void update(String event) {...}
static boolean B1(){return connector.equals("B1");}
static boolean B2(){return connector.equals("B2");}
static boolean C() {return connector.equals("C");}
static boolean D() {return connector.equals("D");}

}

The method update is called for each new event, with a string representing the event.
The methods B1, B2, C and D form the interface to the logic and return true when the
corresponding events occur. For each new event, the EAGLE monitors defined below
will be evaluated against this state. First, we shall define a few auxiliary application
specific rules in addition to the temporal combinators A, E, P, U and W from Section 2.
The following are shorthands for event recognizers (only those needed in this example
are listed).

min B12() = B1() ∨ B2()
min B2(int id) = B2() ∧ ident = id
min C(int id) = C() ∧ ident = id

The rule B12() is a shorthand for the occurrence of either a B1 or a B2 event. The
rules B2(int id) and C(int id) represent the occurrence of a production by producer 2,
or a consumption by the consumer, of a message that is identified by id. These rules
are defined as minimal since at the boundaries (before and after execution) no events
occur. The following three rules define extensions of the combinators E and P that were
introduced in Section 2. The extensions include constraints on time and message ids.

min Et(Form t, int time) = E(t ∧ clock ≤ time)
min Eti(Form t, int time, int id) = E(t ∧ clock ≤ time ∧ ident = id)
min Pi(Form t, int id) = P(t ∧ ident = id)

The rule Et(Form t, int time) denotes the property that t will eventually occur, and
before the clock (one of the variables in the state) increases beyond time. The param-
eter time will capture this upper future time bound when the rule is applied. The rule
Eti(Form t, int time, int id) is like Et but extended to also put a constraint on the
message id. That is, it denotes the property that t will eventually occur, before clock
increases beyond time, and with a message id being equal to id. The property Pi(Form
t, int id) denotes the property that t occurred in the past and with a message id being
equal to id.

The properties can now be formalized as follows.

requiredResponse

This property can be stated as the following response property (every event of type X
must be followed later by some other event of type Y).

mon requiredResponse = A(B12() → Eti(D(), clock + 50, ident))

Automated Runtime Verification with Eagle 9

The monitor states that whenever a B1() or B2() event occurs (represented by B12()
evaluating to true), then Eti(D(),clock + 50,ident) holds. This in turns states that even-
tually within 50 seconds, a D() communication must occur of that same message. This
is expressed by passing as arguments to Eti the absolute time when it has to occur (the
current time plus 50), and the identifier of the current message.

stayAliveQueue

This property can also be stated as a response property.

mon stayAliveQueue = A(B12() → Et(C(), clock + 32))

This monitor is expressed in the same style as the previous monitor. However, in this
case we are not interested in the identity of the message consumed by the consumer,
hence only the upper time bound is passed as parameter to Et.

limitedSize

This counting property can be stated as follows.

max CountSize(int size) = B12() → (size < 40 ∧©CountSize(size + 1))
∧ C() →©CountSize(size− 1)
∧ D() →©CountSize(size)

mon limitedSize = CountSize(0)

In order to express this property, we need to define an auxiliary rule CountSize that
counts the number of pending events in the queue. The rule is parameterized with the
current count, and is defined by recursion by case: if a B1() or B2() event occurs, then
we require that the current count is less than 40, and in the next state we continue with
a count increased by 1. C() events cause the counter to be decremented, and D() events
have no effect. The monitor starts with a zero counter.

C D Alternation

This property can be formulated as a state machine with two states, S1 and S2, with the
initial state being S1. The state machine expresses the alternation between consump-
tions on C and acknowledgements on D.

max S1() = (C() →©S2()) ∧ (¬C() →©S1()) ∧ ¬D()
min S2() = (D() →©S1()) ∧ (¬D() →©S2()) ∧ ¬C()
mon C D Alternation = S1()

For example, when in state S1, and a C() event occurs, the next machine state will
be S2(). A non C() event causes the machine to stay in the currrent state. The fail
condition for state S1() is the occurrence of a D() event. There is no success condition
since the alternating property never gets satisfied finally, it’s a property being monitored
continuously. Note that state S1() is defined as a maximal rule, while state S2() is
defined as a minimal rule, reflecting that state S1() is an accepting state, while state
S2() is a rejecting state, that has to be left before the application terminates. This reflects
the extra requirement that every C() event has to be followed by a D() event.

10 Goldberg and Havelund

stayAliveConsumer

This property can be stated as a simple response property as follows.

mon stayAliveConsumer = A(C() → Et(D(), clock + 30))

noJunkConsumed

This property can conveniently be expressed with past time logic as follows.

mon noJunkConsumed = A(C() → Pi(B12(), ident))

The formula states that whenever a C() event occurs, then in the past a B1() or B2()
event has occurred with the same message id as that of the C() event. Note that in order
to check the property above, the monitor will have to keep track of all ids of messages
produced by the two producers. EAGLE does this automatically.

noJunkAcknowledged

This property can be stated in a similar way as a past time formula.

mon noJunkAcknowledged = A(D() → Pi(C(), ident))

orderPreserved

This property can be formulated in a mixture of state machine notation and tempo-
ral logic. The state machine is slightly more complicated than the state machine for
C D Alternation due to the need of two machine state variables (rule parameters) id1
and id2 for capturing message identifiers, leading to the extra rules R1′ and R2′ for
assigning new values to these variables when transitioning from one state to another, as
explained in Section 2.

max R0() = (B1() → R1′(ident, 0)) ∧©R0()

max R1′(int id1, int id2) = ©R1(id1, id2)
max R1(int id1, int id2) = C(id1)∨

((B1() → R2′(id1, ident))
∧ (¬B1() →©R1(id1, id2)))

max R2′(int id1, int id2) = ©R2(id1, id2)
max R2(int id1, int id2) = W(¬C(id2),C(id1))

mon orderPreserved = R0()

The monitor starts in state R0. Upon recognition of a B1() event, state R1 is entered, re-
membering that value of the current message identifier in machine state variable id1 (id2
is initialized to 0). Independently of whether a B1() event occurs, a transition leads back

Automated Runtime Verification with Eagle 11

to state R0 such that this property is checked in every state. An alternative would have
been to formulate state R0 as having one success formula, being a temporal always-
property (using the A combinator) of the form

max R0() = A(B1() → R1′(ident, 0))

In state R1(id1,id2), as long as no new message is produced by producer 1, a success
criteria is that the previous message produced by producer 1, and identified by id1,
gets consumed. Alternatively, in case of a new B1() event, machine state R2′(id1,ident)
is entered, now remembering the new message identifier in id2. State R2(id1,id2) is
formulated as a temporal property stating that there should not be a consumption of
id2 before a consumption of id1. This is expressed with the Weak Until combinator
W, stating that either the consumer will never consume the message identified by id2,
or (in case it does), the message with id1 will be consumed first (no consumption of
id2 until id1 is consumed). Observe how this property has been expressed in a mixture
of state machine notation (identifying the main states and transitions) and temporal
logic notation (expressing a success coondition). The last property expresses the priority
aspect of the queue.

B1HasPriority

This property can be stated as follows in EAGLE.

min CForB1BeforeCForB2(int id) = U(¬(C() ∧ identFromB2(ident)),C(id))
min identFromB2(int id) = P(B2(id))
mon B1HasPriority = A(B1() → CForB1BeforeCForB2(ident))

The monitor reads as follows. Whenever a message is produced by producer 1, then that
message must be consumed before any message produced by producer 2 is consumed.
This latter property is exppressed by CForB1BeforeCForB2(ident). This rule states
(using the U combinator) that eventually the message is consumed (C(id)), and until
then there is no consumption of a message (C()) that has been produced by producer 2
in the past (identFromB2(ident)).

5 Conclusion

We have shown how EAGLE can be used to monitor behavioral properties in a com-
ponent architecture setting. For presentation purposes the example is simple, but the
extensibility mechanism of EAGLE allows construction of a library of rules formalizing
domain concepts. With this very complex behavioral properties can be expressed.

References
1. 1st, 2nd, 3rd and 4th Workshops on Runtime Verification (RV’01 - RV’04), 2001–2004, volume

55(2), 70(4), 89(2), 113 of ENTCS. Elsevier Science Direct.
2. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification. In

B. Steffen and G. Levi, editors, Proceedings of Fifth International VMCAI conference (VM-
CAI’04), volume 2937 of LNCS. Springer, January 2004.

