
Aspect-Oriented Monitoring of C Programs

Klaus Havelund and Eric Van Wyk

Abstract— The paper presents current work on extending
ASPECTC with state machines, resulting in a framework for
aspect-oriented monitoring of C programs. Such a framework
can be used for testing purposes, or it can be part of a fault
protection strategy. The long term goal is to explore the synergy
between the fields of runtime verification, focused on program
monitoring, and aspect-oriented programming, focused on more
general program development issues. The work is inspired by
the observation that most work in this direction has been done
for JAVA, partly due to the lack of easily accessible extensible
compiler frameworks for C. The work is performed using the
SILVER extensible attribute grammar compiler framework, in
which C has been defined as a host language. Our work consists
of extending C with ASPECTC, and subsequently to extend
ASPECTC with state machines.

I. INTRODUCTION

The work presented in this paper explores the synergy
between two research topics: Runtime Verification (RV) and
Aspect-Oriented Programming (AOP). The two fields turn
out to meet in a “sweet spot” with the common objective of
monitoring program executions against temporal properties.

Research in runtime verification attempts to develop tech-
nologies for monitoring the execution of software systems
in order to detect violations of specifications stating the
expected behavior [9], [5]. This includes our own work [3],
[7]. Specifications are usually written as state machines,
regular expressions, some form of temporal logic, or even as
context-free grammars. From such a specification a monitor
is generated, which driven by events changes state accord-
ingly. The monitor will contain error states, which when
entered cause some action to be executed. The reaction is
typically the generation of an error message, or in some
cases the execution of user provided code. Typically a mon-
itored program is instrumented to drive the monitors. Such
instrumentation is performed with various instrumentation
packages, such as low level bytecode engineering tools for
Java, or source code instrumentation tools like CIL [10] for
C. Aspect-oriented programming frameworks have also been
used, but typically only as the target of a translation from a
runtime verification domain-specific language.

Research in aspect-oriented programming, on the other
hand, attempts to develop technologies for programming
software systems. This includes systems such as ASPECTJ

K. Havelund is with Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA. klaus.havelund@jpl.nasa.gov

E. Van Wyk is with the Department of Computer Science and Engineer-
ing, University of Minnesota, Minneapolis, MN, USA. evw@cs.umn.edu

This work is partially funded by NSF CAREER Award #0347860 and
NSF CCF Award #0429640.

Part of the research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

[8] and ASPECTC [2]. The fundamental idea is that of an
advice consisting of a pointcut and a reaction (a statement).
The pointcut is in the simple case a predicate on program
statements, and the reaction is meant to be executed when the
application program to which the advice is applied reaches
a statement during execution that satisfies the pointcut. This
is achieved by weaving in the advice reaction at the right
place in the code using an aspect compiler, which essentially
performs a program instrumentation of the original program.
A branch of research in the aspect-oriented programming
community is concerned with enriching pointcut languages.
This research includes investigating what in some literature
is called tracecuts or stateful aspects [6], [15], [4], [14],
[1], an extension of pointcuts which denote predicates on
the execution trace. In this case an advice consists of a
tracecut and a reaction, and the reaction gets executed when
the tracecut becomes true on the execution trace seen so far.

Our most recent work includes the state machine based
monitoring system RMOR [7] for C, which combines ideas
from runtime verification and aspect-oriented programming.
RMOR is in particular inspired by the graphical requirements
capture language RCAT [11], [12]. However, RMOR is not
an aspect-oriented programming framework. In this paper
we propose to go all the way, and to extend ASPECTC
with state machines, inspired by RMOR, resulting in the
XSPEC language. Such a framework can be used for testing,
fault protection, as well as for aspect-oriented software
development. Our work is driven by practical situations
within NASA’s Jet Propulsion Laboratory (JPL), where state
machines form a critical part of most embedded software
applications, such as rover and space craft controllers.

II. REQUIREMENTS FOR REAL-WORLD IMPACT

The main goal of the presented work is to develop a
framework for monitoring the execution of C programs
against specifications. Our experience in building runtime
verification frameworks and extensible languages leads us to
believe that a successful strategy for ensuring that such a
system will be widely used and can be constructed in a cost
effective way is to satisfy the requirements described below.

a) Lexical Specification Language: The specification
language must be lexical (text-based). The observation is
that engineers are comfortable with lexical programming lan-
guages. A lexical language can have a graphical counterpart,
and conversion to text, but there should also be a reverse
mapping, such that programming can be performed in the
lexical language. The specification language should be tightly
integrated with the programming language.



b) State Machines: Engineers appear to favor state
machines as a specification language. At JPL for example,
state machines form an important part of programming tasks.
At current times, such state machines are hand-coded in raw
C. A domain-specific language for writing state machines
seems like a natural extension of C. Such state machines
should be usable for programming as well as for monitoring.

c) Temporal Logic: It should be possible for a user to
define abstract temporal operators for use in monitoring, as
shorthands for parameterized state machines.

d) Programs as Specifications: We believe that in the
ultimate case the programmer should be allowed to write
specifications that contain pure code. This may be useful
in case the provided specification language does not suffice
for expressing a given property. It should be possible to
integrate this code with proper specifications in such a way
that there is not a divisive distinction between the two. It is
our belief that the programming language therefore should
have specification-like features, such as notions of sets, lists
and maps, and logic quantifiers (not discussed further).

e) Aspect-Oriented Programming: Program instrumen-
tation is an important element of any runtime verification en-
vironment. The system to be monitored must be instrumented
to drive the monitors. Such instrumentation should ideally
be automated based on specifications of relevant events.
Aspect-oriented programming offers a simple, but powerful
language framework for expressing program instrumentation.
We therefore believe that a runtime verification environment
naturally can be expressed as an extension of an already
existing AOP framework, such as ASPECTC.

f) Domain-Specific Monitoring Specification
Languages: Different user communities may want different
formalisms for specifying monitoring conditions. The
difference here is primarily syntactic but such things do
matter to real users. Thus, a successful framework must be
extensible so that new specification language features can
be easily introduced and used. This allows users to write
specifications in the notation that they prefer, that is specific
to the task at hand or domain of interest.

III. DESIGN OF XSPEC

The design of XSPEC1 will be illustrated by first giving
an example application program and some properties to be
monitored. Then follows an example of how this would
be done using ASPECTC as is. It is then illustrated what
an RMOR specification [7] would look like, using state
machines. Finally it is illustrated how these two language
frameworks are combined into what we name XSPEC.

A. A file system example

Consider the following over-simplified C program con-
taining functions for opening, processing and closing files
identified by their name only (for simplicity):

1The name XSPEC is a play on (i) x for cross-cutting functionality as sup-
ported by aspect-oriented programming; (ii) spec (short for specification);
and (iii) expect (expect your program to conform to certain properties).

void openfile(char *file);
void processfile(char *file);
void closefile(char *file);
int main {...}

Suppose we want to express and monitor the property that
a file should be opened, processed and eventually closed, in
that order. Furthermore, assume that when an already opened
file is re-opened, the attempt should be logged, and that if
the program terminates, all not yet closed files should be
closed.

B. Programming a monitor in ASPECTC

A monitor for this problem in ASPECTC can be written
as follows:

SetPtr set;

after(char *file):
call(void openfile(char*)) &&
args(file)

{
if (set_contains(set,file)) log(file);
else set = set_insert(set,file);
}

after(char *file):
call(void processfile(char*)) &&
args(file)

{
if (!set_contains(set,file)) error();
}

after(char *file):
call(void closefile(char*)) &&
args(file)

{
if (!set_contains(set,file)) error();
else set = set_remove_element(set,file);
}

before(): call(void end())
{
set_foreach(set,closefile_late);
}

The example illustrates four pieces of advice, one for each
of the functions openfile, processfile and closefile, and one
final one for a function end, which we assume is called at
the end of the monitored application. The first advice catches
all calls of the openfile function, using ASPECTC’s pointcut
language. It inserts the code in between the curly brackets {
. . . } after each such call. The code checks if the file is in
the set of opened files, maintained for this purpose, and if
it is, an error message is printed. Otherwise the file name is
added to this set. Similarly for the other advice. The advice
for the end function iterates through the set of names of
open files remaining in the set and closes them. Although



the example is manageable, it is it is obvious that this form
of programming can become complicated in cases when the
logic becomes more complex. The next solution illustrates
how the use of a state machine can simplify the specification
task.

C. Programming a monitor in RMOR

In [7] we present the monitoring framework RMOR for
monitoring C programs. The RMOR specification language
allows us to state an approximation of the two properties as
the following state machine:

handled monitor OpenClose{
event open = after call(openfile);
event process = after call(processfile);
event close = after call(closefile);

state FileClosed {
when open -> FileOpen;
when process => error;
when close => error;

}

live state FileOpen {
when open => error;
when close -> FileClosed;

}
}

The specification defines three events: open, process, and
close, each defined as an event emitted after calls of the
functions openfile, processfile and closefile respectively. The
latter are specified via pointcuts written in a language equiva-
lent to the pointcut language of aspect-oriented programming
languages, specifically ASPECTJ [8]. The monitor defines a
state machine, with two states FileClosed (the initial state)
and FileOpen. In the FileClosed state an open event brings
the state machine to the FileOpen state. Similarly, in the
FileOpen state the event close brings the state machine back
to the FileClosed state. The FileOpen state is live, meaning
that the program is not allowed to terminate in this state,
doing so causes an error. Finally, it is an error for a file to
be processed or closed in the FileClosed state, and similarly,
it is an error to open a file in the FileOpen state. Errors cause
error messages to be printed, but can be handled by a user
provided handler function.

Two observations should be made about the RMOR spec-
ification: (i) Events do not carry data values (file names)
as does the ASPECTC model. This means that the RMOR
monitor does not state the desired property. For example,
the original ASPECTC model allows two different files to be
open at the same time, whereas the RMOR specification does
not. (ii) The state machine language is defined as a grammar
independently of the C programming language grammar.
RMOR is implemented in CIL [10], where the C grammar
and parser is a closed system that cannot be extended easily.
This means specifically that it is not possible to express the
user defined error reactions (logging of file re-openings and

closing of files at end) as part of the RMOR specification.
Currently this is done by specifying that the monitor is
handled (an RMOR keyword), and then provide a function
in the application program with a specific signature, that
handles the error cases and which RMOR calls.

D. Programming a monitor in XSPEC

The previous two specification attempts illustrate that a
combination of the two notations may be attractive. XSPEC
is therefore an extension of ASPECTC with state machines
similar to those of RMOR. The specification in XSPEC
becomes as follows.

xspec OpenClose(char *file) {
pointcut open :
call(void openfile(char*)) &&
args(file);

pointcut process :
call(void processfile(char*)) &&
args(file);

pointcut close :
call(void closefile(char*)) &&
args(file);

state FileClosed {
after : open(file) -> FileOpen;
after : process(file) => error;
after : close(file) => error;

}

live state FileOpen {
after : open(file) => error {
log(file);

}
after : close(file) -> FileClosed;
before : end {
closefile(file);

}
}

}

We have introduced the notion of an xspec to define a state
machine. In the tradition of ASPECTC, we can define point-
cuts and advices. However, advices can now be grouped into
states, the intention being that an advice is only active when
the state is active. The whole specification is parameterized
with a file, meaning that it is intended to track the behavior
of a file. The intended semantics is similar to the semantics
of Tracematches [1] in that we consider an xspec to denote
an infinite set of monitors, one for each file as indicated by
the parameter to the xspec. Each such monitor is tracking
the behavior of a specific file. Obviously this semantics is
abstract and not intended as an implementation strategy.

It is the intention to allow state machines to be defined
independently of monitors. In this way a state machine can
be used for programming as well as for monitoring. Another
planned extension is the possibility of defining temporal
operators on top of the state machine language. It is our



intention to allow a user to name a frequently used state
machine pattern, parameterized with the events that drive the
specification. This is similar to parameterizing aspects with
pointcuts.

IV. EXTENSIBLE XSPEC IMPLEMENTATION

To implement XSPEC in a cost-effective way and to
satisfy the “extensibility” requirement described in Section
II, we will build XSPEC as a language extension using
ABLEC—an extensible implementation of ANSI C based on
attribute grammars. ABLEC is implemented using SILVER-
an attribute grammar system with several features designed
to support the specification of modular and composable lan-
guage extensions. In using this approach, we build XSPEC in
three layers. The first layer is ABLEC. Second, ASPECTC [2]
is defined as an extension to C. Finally XSPEC is defined as
an extension to ASPECTC. The first layer, ABLEC, has been
implemented in a beta-version. The second layer, ASPECTC,
is under construction. The third layer, XSPEC, is under
design.

A. SILVER attribute grammars and ABLEC

SILVER has previously been used to build ABLEJ [13], an
extensible implementation of Java 1.4. Several modular and
composable language extensions have been implemented in
this framework. For example, one extends Java with SQL
so that database queries can be typed in a natural syntax
and can be checked for syntax and type errors at compile
time. Another extension adds dimension analysis to the type
system so that, for example, a length measurement in feet is
not incorrectly added to a volume measurement in meters.

In attribute grammars, the context-free grammar that de-
fines the abstract syntax of the language is enhanced by
associating attributes with nonterminals in the grammars.
The values of these attributes are specified by declarative
rules (attribute assignments) associated with productions in
the grammars. These rules implement the desired semantic
analysis, e.g. type checking, of the language. ABLEC is
an extensible specification of ANSI C implemented as an
attribute grammar written in SILVER. To understand how
attribute grammars are used in the extensible implementa-
tion of ABLEC, consider the production below for function
definitions.

abstract production func_def
fd::FuncDef ::= ds::DclSpecs dc::Dcl

body::CStmt
{
fd.errors = ds.errors ++ dc.errors ++

body.errors;
body.env = appendEnv(dc.defs,

appendEnv(dc.param_defs, fd.env));
...

}

This abbreviated production indicates that a function defini-
tion (FuncDef nonterminal) named fd consists of declara-
tion specifiers (DclSpecs) named ds, a declarator (Dcl)

named dc and a compound statement (CStmt) function
body named body). It defines the synthesized errors
attribute on fd from the errors on the children, and
defines the inherited env attribute on body to pass a symbol
table down the AST for type checking. Many details are
omitted, but it suffices to say that ANSI C can be imple-
mented in this manner. ABLEC is such an implementation
that performs type checking, but does not generate machine
code. It instead outputs ANSI C code to be compiled by a
traditional compiler.

Attribute grammar fragments defining language extensions
can be added to ABLEC. A mechanism called forwarding can
be used by productions defining new language constructs to
specify their translation into semantically equivalent ANSI
C constructs. Note that issues related to parsing extensible
languages are also dealt with in SILVER, see [13] for details.

B. The ASPECTC extension

The attribute grammar that defines the ASPECTC exten-
sion is based on the specification in [2]. As an example,
consider the advice declaration below:

after(char *file):
call(void openfile(char*)) &&
args(file)

{...}

Part of the SILVER specification of ASPECTC that defines the
abstract syntax of the advice construct can be seen below:

abstract production advice
adv::FuncDef ::= dc::Dcl pc::Pointcuts

cs::CStmt
{
dc.env = adv.env;
pc.env = appendEnv(dc.param_defs,

adv.env);
cs.env = appendEnv(dc.param_defs,

adv.env);
}

In C grammar terminology, it consists of a declarator
“after(char *file)”, a single pointcut “call(void
openfile(char*)) && args(file)”, and a com-
pound statement “{...}”. Such an advice definition is
regarded as a special case of a C function definition and
adds a new alternative to the FuncDef nonterminal.

The declarator environment inherits the environment com-
ing in from above. The environment passed to the pointcut
as well as to the compound statement is the environment
produced by the parameter list of the declarator, which
includes the inherited top level environment. Type checking
and other static checks are performed based on these environ-
ments. The ASPECTC specification does not use forwarding
to translate ASPECTC code to ANSI C; instead, it will type
check and then output ASPECTC code to be compiled by an
existing ASPECTC compiler.



C. The XSPEC extension

The XSPEC extension will be constructed following the
pattern described above, which has been used successfully
in other extensible language implementations such as ABLEJ.
XSPEC extends our implementation of ASPECTC. It differs
from the ASPECTC extension in that it will use forwarding
to translate XSPEC code to semantically equivalent AS-
PECTC code that will perform the weaving that implements
the code instrumentation. Note that the XSPEC example
from Section III-D will most likely not translate to the
ASPECTC example from Section III-B but to a more direct
implementation of the state machine. An advantage of using
attribute grammars with forwarding is that the productions
defining the XSPEC extensions will define attributes to do
semantic analysis such as type checking at the XSPEC level.
In addition, domain-specific analyses, such as checking for
un-reachable states, are now possible. Such analysis and
more helpful error messages can be generated in this way.
This analysis and error messages over XSPEC specifications
are not possible if all semantic analysis is performed at the
ASPECTC level.

V. CONCLUSION AND FUTURE WORK

We have presented current work on implementing an
extensible definition of ASPECTC in the SILVER extensible
compiler framework. We have furthermore discussed the
design of an extension of ASPECTC with state machines, in
order to facilitate convenient programming of monitors. It is
important to emphasize that even though our emphasis is run-
time verification, we do believe that this topic can leverage
the popularity of aspect-oriented programming. XSPEC can
be used as a general purpose aspect-oriented programming
language as well as for runtime verification purposes. The
framework should in addition allow user-defined temporal
operators to be defined as parameterized state machines.
An approach currently under investigation is to use an even
stronger underlying rule-based framework [3], in which state
machines and other logics can be defined.

REFERENCES

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble.
Adding trace matching with free variables to AspectJ. In OOPSLA’05.
ACM Press, 2005.

[2] AspectC. http://research.msrg.utoronto.ca/ACC.
[3] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-

time monitoring: from Eagle to RuleR. In 7th International Workshop
on Runtime Verification (RV’07), Vancouver, Canada, LNCS. Springer,
March 2007.

[4] C. Bockisch, M. Mezini, and K. Ostermann. Quantifying over dynamic
properties of program execution. In 2nd Dynamic Aspects Workshop
(DAW05), Technical Report 05.01, pages 71–75. Research Institute for
Advanced Computer Science, 2005.

[5] F. Chen and G. Roşu. MOP: An efficient and generic runtime
verification framework. In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’07), 2007.

[6] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Sgura-
Devillechaise, and M. Südholt. An expressive aspect language for
system applications with Arachne. In Proceedings of the 4th interna-
tional conference on Aspect-oriented software development, Chicago,
USA, Mar. 2005. ACM Press.

[7] K. Havelund. Runtime verification of C programs. In 1st Int.
TESTCOM/FATES Conference on Testing of Communicating Systems
(TESTCOM) and Formal Approaches to Testing of Software (FATES),
LNCS. Springer Verlag, June 2008.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In J. L. Knudsen, editor, European
Conference on Object-oriented Programming, volume 2072 of LNCS,
pages 327–353. Springer, 2001.

[9] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a run-
time assurance tool for Java. In Proceedings of Runtime Verification
(RV’01), volume 55 of ENTCS. Elsevier Science, 2001.

[10] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In
Proceedings of Conference on Compiler Construction, 2002.

[11] M. Smith. Requirements for the demonstration version of the Re-
quirements CApture Tool (RCAT). JPL/RSS Technical Report, RSS
Document Number: ESS-02-001, 2005.

[12] M. Smith and K. Havelund. Requirements capture with RCAT. In 16th
IEEE Int. Requirements Engineering Conference. September 2008.

[13] E. Van Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. Attribute
grammar-based language extensions for Java. In European Conference
on Object Oriented Programming (ECOOP), volume 4609 of LNCS,
pages 575–599. Springer Verlag, July 2007.

[14] W. Vanderperren, D. Suvé, M. A. Cibrán, and B. D. Fraine. Stateful
aspects in JAsCo. In 4th International Workshop on Software Com-
position, ETAPS 2005, volume 3628 of LNCS. Springer, 2005.

[15] R. Walker and K. Viggers. Implementing protocols via declarative
event patterns. In R. Taylor and M. Dwyer, editors, ACM Sigsoft
12th International Symposium on Foundations of Software Engineering
(FSE-12), pages 159–169. ACM Press, 2004.


